WASTEWATER TREATMENT DEVELOPMENTS AND TRENDS IN THE 21ST CENTURY

Presented at the

EDEYA Workshop on

Small Wastewater Systems

Athens, Greece September 14, 2016

George Tchobanoglous and Harold Leverenz

Department of Civil and Environmental Engineering University of California, Davis

DISCUSSION TOPICS

- Paradigm Shift/Fundamental Question
- 21st Century Challenges and Issues
- New Technologies for the 21st Century
- Application of New Technologies
- Design of WWTPs for Potable Reuse
- Probabilistic Process Design
- Urine Separation and Processing
- Closing Thoughts

WASTEWATER MANAGEMENT IN THE 21ST CENTURY

A PARADIGM SHIFT: A NEW VIEW OF WASTEWATER

Wastewater is a renewable recoverable source of potable water, resources, and energy.

A FUNDAMENTAL QUESTION

What is the optimal use of the carbon in wastewater?

21ST CENTURY CHALLENGES AND ISSUES FOR WASTEWATER MANAGEMENT •POPULATION DEMOGRAPHICS •IMPACT OF CLIMATE CHANGE •DECREASING PER CAPITA FLOWRATES •AGING INFRASTRUCTURE

IMPACT OF POPULATION DEMOGRAPHICS ON ON WATER REUSE

INTERCEPTED IN-BUILDING SELF-CONTAINED WATER RECYCLE SYSTEM

Reclaimed water is used for toilet flushing, landscape irrigation, and cooling water

INTEGRATED WASTEWATER MANAGEMENT

CURRENT AND PROJECTED PER CAPITA WATER USE IN THE UNITED STATES

Range

40 - 80

16 - 50

10 - 75

15 - 25

15 - 25

96 - 255

2013

Typical

60

35

40

20

20

175

Flow, gal/capita•d

2020

Typical

55

35

35

18

18

161

Range

35 - 65

16 - 50

10 - 70

15 - 25

15 - 25

2030

Typical

45

35

30

15

15

138

Range

30 - 60

16 - 50

10 - 65

15 - 25

15 - 25

-			
	L 1	m	

(i) Pre-1992

(ii) Improved water conservation

(iii) Maximum water conservation

IMPACT OF WATER CONSERVATION AND DROUGHT: SOLIDS DEPOSITION, H₂S FORMATION, AND DOWNSTREAM CORROSION DUE TO REDUCED FLOWS

THE IMPACT OF CONSERVATION: ENHANCED CORROSION AND INCREASED MASS LOADINGS

- Reduced flow results in solids deposition
- Solids undergo decomposition and produce H₂S
- H₂S is transported with the water
- Downstream H₂S increases the rate of corrosion

- Per capita wastewater flow rates decreasing
- Flow rates will not increase beyond current values
- Mass loadings of constituents will increase with population growth without a flowrate increase

Use of Existing Collection System For Source Separated Resource Streams

NEW TECHNOLOGIES FOR THE 21ST CENTURY

- Alternative primary treatment processes
- Enhanced primary treatment
- Enhanced primary-secondary treatment
- Enhanced removal of algae
- Enhanced wetland systems

ALTERNATIVE TECHNOLOGIES FOR ENHANCED PRIMARY TREATMENT: CLOTH SCREEN (250-300 MM)

ALTERNATIVE TECHNOLOGIES FOR ENHANCED PRIMARY TREATMENT: CHARGED BUBBLE FLOTATION

- 1/5th the size of conventional clarifiers
- Nanoparticles can be added to charged bubble for removal of specific constituents

ALTERNATIVE TECHNOLOGIES FOR ENHANCED PRIMARY TREATMENT: CLOTH DISK FILTER (5-10 μm)

Vacuum suction head

Fiber thickness = 0.007 mmDepth filter L/D = 400 to 800Cloth filter L/D = 425 to 725

Unit	Average influent	Average effluent	Average removal, %
mg/L	1 <mark>6</mark> 9	59	64.2
mg/L	417	147	62.8
mg/L	221	26	87.5
mg/L	116	36	69.0
NTU	143	37	73.5
mg/L	39	36	7.7
mg/L	14	10	28.6
%	28	44	+59.9
	Unit mg/L mg/L mg/L NTU mg/L mg/L	Average influentmg/L169mg/L417mg/L221mg/L116NTU143mg/L39mg/L14%28	Average influent Average effluent mg/L 169 59 mg/L 417 147 mg/L 221 26 mg/L 116 36 NTU 143 37 mg/L 39 36 mg/L 14 10 % 28 44

Replace and Repurpose Existing Primary Clarifiers

NEW TECHNOLOGIES FOR THE 21ST CENTURY

- Alternative primary treatment processes
- Enhanced primary treatment
- Enhanced primary-secondary treatment
- Enhanced removal of algae
- Enhanced wetland systems

Primary Effluent Filtration (PEF) of Settled Raw Wastewater before Biological Treatment

Compressible medium filters

PEF and Primary Solids Fermentation for Enhanced Performance and Improved Energy Balance

Courtesy Onder Caliskaner

NEW TECHNOLOGIES FOR THE 21ST CENTURY

- Alternative primary treatment processes
- Enhanced primary treatment
- Enhanced primary-secondary treatment
- Enhanced removal of algae
- Enhanced wetland systems

BACKWASHING UNSATURATED FLOW PUMICE FILTER

TYPICAL PERFORMANCE DATA FOR PUMICE FILTER

Parameter	Unit	Influent	Effluent
Chemical oxygen demand (COD)	mg/L	350	70
Biochemical oxygen demand (BOD)	mg/L	130	20
Total suspended solids (TSS)	mg/L	60	10
Turbidity	NTU	90	5
Total Kjeldahl nitrogen (TKN)	mg N/L	260	30
Ammonium nitrogen	mg N/L	200	20
Nitrate nitrogen	mg N/L	0	100
Dissolved oxygen	mg/L	0	6

In single-pass mode at 75 gal/ft²·d (3,000 L/m²·d) with septic tank effluent

Specific weight= 640 kg/m3Average porosity= 90 %Particle size= 2- 4 mm

Contact:

Dr. Harold Leverenz Email: harold.leverenz@gmail.com

ADVANTAGES OF PUMICE FILTER

- High organic loading rate
- Single or multi-pass operation
- Small size can be located in an enclosure to protect from weather elements
- The filter is located above ground
- Easy to prefabricate and plumb at treatment site
- Being above ground, filter is easy to maintain
- Filter is easy to aerate
- Lower energy input

RELATIVE SIZE OF ALTERNATIVE TREATMENT PROCESSES BASED ON NITROGEN LOADING

COMPLETE TREATMENT WITH PUMICE FILTER

HORIZONTAL SUB-SURFACE FLOW ANOXIC WETLAND FOR NITROGEN REMOVAL

RECYCLE SYSTEM FOR TOILET FLUSHING

APPROACHING NET-ZERO WATER: ENERGY-POSITIVE MUNICIPAL WATER MANAGEMENT

Source: Jim Englehardt University of Miami College of Engineering

NEW TECHNOLOGIES FOR THE 21ST CENTURY

- Alternative primary treatment processes
- Enhanced primary treatment
- Enhanced primary-secondary treatment
- Enhanced removal of algae
- Enhanced wetland systems

ALGAL REMOVAL WITH CHARGED BUBBLE FLOTATION PROCESS

Thickened algae ~4-5%

Effluent turbidity typically, <1 NTU

Pasteurization for disinfection Compressible medium effluent filtration

Algae dewatered on straw bed

NEW TECHNOLOGIES FOR THE 21ST CENTURY

- Alternative primary treatment processes
- Enhanced primary treatment
- Enhanced primary-secondary treatment
- Enhanced removal of algae
- Enhanced wetland systems

INTENSIFICATION OF WETLAND TREATMENT

- Surface flow wetland with step-feed and recycle flow in linear or wrap around design
- Surface flow wetland with step-feed, aeration, and recycle flow
- Surface flow wetland with side-stream pure oxygen aeration
- Horizontal sub-surface flow aerated wetland
- Horizontal sub-surface flow anoxic wetland
- Tidal flow (fill and draw) reciprocating flow wetland
- Single pass high ammonia exchange capacity
- Surface flow with side-stream zeolite anammox treatment

INTENSIFICATION WITH STEP-FEED AND LOW-HEAD RECYCLE

with optional recycling

SURFACE FLOW WETLAND WITH STEP-FEED, AERATION, AND RECYCLE FLOW

Recycle flow = 2Q

TYPICAL HORIZONTAL SUB-SURFACE FLOW AERATED WETLAND

Courtesy David Austin, CH2M

FILL AND DRAIN (TIDAL) WETLAND WITHOUT OR WITH AERATION

RECIPROCATING FILL AND DRAIN (TIDAL) WETLAND WITHOUT OR WITH AERATION AND ADSORPTIVE MEDIUM

SURFACE FLOW WETLAND WITH SIDESTREAM OXYGENATION FOR NITRIFICATION

TWO-STAGE FILL AND DRAIN (TIDAL) WETLAND WITH ADSORPTIVE MEDIM

FIG. 115.—Arrangement of double contact beds.

DESIGN OF WASTEWATER TREATMENT SYSTEMS FOR POTABLE REUSE

ARE ALL SECONDARY WASTEWATER TREATMENT PROCESSES SUITABLE FOR PR?

DESIGN OF BIOLOGICAL TREATMENT PROCESS FOR ALTERNATIVE END POINT

It is time to rethink wastewater treatment

IMPACT OF CHANGE IN OPERATION OF BIOLOGICAL TREATMENT PROCESS ON OCWD MF RESISTANCE

PROBABALISTIC ANALYSIS AND DESIGN OF DECENTALIZED WASTEWATER MANAGEMENT SYSTEMS FOR DIFFERENT USES

DEVELOPMENT OF REQUIRED LOG₁₀ REDUCTION VALUES FOR INDIRECT AND DIRECT POTABLE REUSE

Item	Enteric virus	Giardia	Cryptosporidium
Untreated wastewater maximum density	10 ⁵ virus/L	10 ⁵ cysts/L	10 ⁴ oocysts/L
Tolerable drinking water density (TDWD)	2.2 x 10 ⁻⁷ virus/L	6.8 x 10 ⁻⁶ cysts /L	1.7 x 10 ⁻⁶ oocysts /L
Ratio of TDWD to wastewater density	2.2 x 10 ⁻¹²	6.8 x 10 ⁻¹¹	1.7 x 10 ⁻¹⁰
Required log ₁₀ reduction value	12	10	10

LOG₁₀ PATHOGEN REDUCTION TARGETS (LRT₀₅) FOR VARIOUS WATERS AND USES

	Log reduction targets for 10 ⁻⁴			
Water use	Enteric viruses	Parasitic Enteric protozoa bacteria		
Municipal wastewater				
Unrestricted irrigation	6.0	6.5	5.0	
Indoor use	6.5	7.5	6.0	
Graywater				
Unrestricted irrigation	5.5	4.5	3.5	
Indoor use	6.0	4.5	3.5	
Stormwater – 10 ⁻¹ dilution				
Unrestricted irrigation	5.0	5.5	4.0	
Indoor use	5.5	6.5	5.0	

UNIT PROCESSES IN RECYCLE SYSTEM FOR TOILET FLUSHING

PERFORMANCE OF UNIT PROCESSES IN RECYCLE SYSTEM FOR TOILET FLUSHING

STASTICAL DATA FOR UNIT PROCESSES IN RECYCLE SYSTEM FOR TOILET FLUSHING

		Log reduction values				
Disinfectant	Surrogate	Lowest observed	LRV ₀₅	LRV_{50}	LRV ₈₄	Sg
Anaerobic biofiltration	Indigenous coliphage	0.8	0.73	0.90	1.02	1.13
Aerobic biofiltration	Indigenous coliphage	0.6	0.72	1.17	1.58	1.35
Sand filtration	MS2	1.7	1.73	2.43	2.99	1.23
Ozonation	MS2	5.2	5.71	6.42	6.80	1.06
Treatment train total		8.3	8.9	10.9	12.4	

MONTE CARLO PERFORMANCE SIMULATION (10,000 SAMPLES) OF RECYCLE SYSTEM FOR TOILET FLUSHING

CLOSING THOUGHTS

- Must think differently about wastewater
- Must embrace new technologies
- Must consider different treatment endpoints
- Must consider probabilistic design
- Must consider alternatives methods for resource recovery

IT'S A NEW WORLD UNLEASH YOUR IMAGINATION!

THANK YOU FOR LISTENING

URINE SEPARATION AND NUTRIENT RECOVERY

NUTRIENTS AND TRACE ORGANICS IN DOMESTIC WASTEWATER: A CASE FOR URINE SEPARATION

Source: Jönsson et al. (2000) Recycling Source Separated Human Urine.

SCHEMATIC OF SEPARATION PROCESS FOR THE RECOVERY OF NUTRIENTS FROM URINE

URINE SEPARATION PROCESS AND PRODUCTS (Ammonium bicarbonate and struvite)

URINE SEPARATION FACILITY AT MICROBREWERY, DAVIS, CALIFORNIA

he Urine Recovery Research Group (URRG) is developing and optimizing a technology that recovers ammonium, phosphate and potassius on urine by precipitation and distillation. Specifically, the distillation of concentrated ammonium bicarbonate and the crystalization of

Goals of this project include: Reduce the nutrient loading to wastewater treatment systems Low energy and commercially valuable fertilizer production Simula design and small featurint allowing for decentralized treatment

treatment costs, produce sustainable fertilizer, improve water quality and protect the ecosystem.

URINE SEPARATION, STORAGE, AND NUTRIENT RECOVERY FROM BUILDINGS AND INDIVIDUAL RESIDENCE

THANK YOU FOR LISTENING